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Abstract
A partial charge–spin separation fermion-spin theory is developed to study
the normal-state properties of the underdoped cuprates. In this approach, the
physical electron is decoupled as a gauge invariant dressed holon and spinon,
with the dressed holon behaving like a spinful fermion, representing the charge
degree of freedom together with the phase part of the spin degree of freedom,
while the dressed spinon is a hard-core boson, representing the amplitude part of
the spin degree of freedom. The local electron constraint for single occupancy is
satisfied. Within this approach, the charge and spin dynamics of the underdoped
cuprates are studied based on the t–t ′–J model. It is shown that the charge
dynamics is mainly governed by the scattering from the dressed holons due to
the dressed spinon fluctuation, while the scattering from the dressed spinons
due to the dressed holon fluctuation dominates the spin dynamics.

1. Introduction

After over fifteen years of intense experimental studies of doped cuprate superconductors,
a significant body of reliable and reproducible data has been accumulated by using many
probes [1, 2], which shows that the most remarkable expression of the nonconventional
physics is found in the normal state [1, 2]. The normal-state properties exhibit a number
of anomalous properties in the sense that they do not fit in the conventional Fermi-liquid
(FL) theory [2–4], and are closely related to the fact that these materials are doped Mott
insulators [1–4]. The ground state in the undoped case is an antiferromagnetic (AF) long-
range-order (AFLRO) Néel state, but changing the carrier concentration by ionic substitution
or increasing the oxygen content turns these compounds into strongly correlated metals
leaving the AF short-range-order correlation still intact [1, 2]. It is then not surprising
that the nonconventional behaviours are most striking in the underdoped regime, where the
concentration of doped holes is small. The anomalous properties observed in a variety of
experiments, such as the nuclear magnetic resonance (NMR), nuclear quadrupole resonance
(NQR), muon spin rotation (µSR) techniques, inelastic neutron scattering studies [5–10],
optical and transport measurements [11–14], and angle-resolved photoemission spectroscopy
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(ARPES) investigation [15], exclude conventional theories. The single common feature in
doped cuprates is the two-dimensional (2D) CuO2 plane [1, 2], and it seems evident that the
nonconventional behaviours are dominated by this plane. Very soon after the discovery of
high-temperature superconductivity (HTSC) in doped cuprates, Anderson proposed a scenario
of HTSC based on the charge–spin separation (CSS) in 2D [3], where the internal degrees
of freedom of the electron are decoupled as the charge and spin degrees of freedom, while
the elementary excitations are not quasi-particles but collective modes for the charge and spin
degrees of freedom, i.e., the holon and spinon, then these holon and spinon might be responsible
for the nonconventional behaviours. Many unusual properties of the underdoped cuprates are
extensively studied following this line within the 2D t–J type model [4, 16].

The decoupling of the charge and spin degrees of freedom of electron is undoubtedly
correct in one-dimensional (1D) interacting electron systems [17], where the charge and
spin degrees of freedom are represented by boson operators that describe the excitations
of charge-density wave and spin-density wave, respectively. In particular, the typical
behaviour of the non-FL, i.e., the absence of the quasiparticle propagation and CSS, has
been demonstrated theoretically within the 1D t–J model [18]. Moreover, the holon and
spinon as the real elementary excitations in 1D cuprates have been observed directly by the
ARPES experiment [19]. Therefore both theoretical and experimental studies indicate that the
existence of the real holon and spinon is common in 1D [20]. However, the case in 2D is very
complex since there are many competing degrees of freedom [1, 2]. As a consequence, both
experimental investigation and theoretical understanding are extremely difficult [1–4]. Among
the unusual properties of the underdoped cuprates, a hallmark is the charge transport [11–14],
where the conductivity shows a non-Drude behaviour at low energies, and is carried by x holes,
where x is the hole doping concentration, while the resistivity exhibits a linear temperature
behaviour over a wide range of temperatures. This is a strong piece of experimental evidence
supporting the notion of CSS, since not even conventional electron–electron scattering would
show the striking linear rise of scattering rate above the Debye frequency, and if there is
no CSS, the phonons should affect these properties [21]. Moreover, it has been argued that
the most plausible source of the absence of phonon scattering and of pair-breaking effects
seems to be CSS [21], and further, compelling evidence for CSS in doped cuprates has been
found from the experimental test of the Wiedemann–Franz law, where a clear departure from
the universal Wiedemann–Franz law for the typical FL behaviour is observed [22]. On the
numerical study front, the crossover from the FL to non-FL behaviour with decreasing the hole
doping concentration near the Mott transition has been found within the 2D t–J model [23].
Furthermore, it has been shown within the 2D t–t ′–J model by using the exact diagonalization
method that there is a tendency of holes to generate nontrivial spin environments; this effect
leads to a decoupling of the spin from the charge [24]. In this case, a formal theory with the
gauge invariant holon and spinon, i.e., the issue of whether the holon and spinon are real, is
centrally important [25]. In this paper, we propose a partial CSS fermion-spin theory, and
show that if the local single occupancy constraint is treated properly, then the physical electron
can be decoupled completely by introducing the dressed holon and spinon. These dressed
holon and spinon are gauge invariant, i.e., they are real in 2D. As an application of this theory,
we discuss the charge and spin dynamics of the underdoped cuprates within the t–t ′–J model,
and the results are qualitatively similar to that seen in experiments.

The paper is organized as follows. The framework of the partial CSS fermion-spin theory
is presented in section 2. Within this theory, the single-particle dressed holon and spinon
Green functions of the t–t ′–J model are calculated in section 3 by considering the dressed
holon–spinon interaction, where the dressed holon and spinon self-energies are obtained by
using the equation of motion method. In section 4, we discuss the charge transport of the
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underdoped cuprates. The incommensurate (IC) spin response of the underdoped cuprates is
studied in section 5. Section 6 is devoted to a summary and discussions.

2. Gauge invariant dressed holon and spinon

We start from the t–t ′–J model defined on a square lattice as [3, 26],

H = −t
∑
i η̂σ

C†
iσ Ci+η̂σ + t ′ ∑

i τ̂ σ

C†
iσ Ci+τ̂ σ + µ

∑
iσ

C†
iσ Ciσ + J

∑
i η̂

Si · Si+η̂ (1)

where η̂ = ±x̂,±ŷ, τ̂ = ±x̂ ± ŷ, C†
iσ (Ciσ ) is the electron creation (annihilation) operator,

Si = C†
i �σCi/2 is spin operator with �σ = (σx , σy, σz) as Pauli matrices, and µ is the chemical

potential. The t–t ′–J model (1) is subject to an important local constraint
∑

σ C†
iσ Ciσ � 1

that a given site can not be occupied by more than one electron. In the t–t ′–J model, the strong
electron correlation manifests itself by this constraint, and therefore the crucial requirement
is to impose this constraint [3, 26–28]. It has been shown that this constraint can be treated
properly within the fermion-spin theory [29]. In this section, we show that the dressed holon
and spinon in the fermion-spin theory are gauge invariant. Following the discussions in [29],
we decouple the constrained electron operator as

Ciσ = h†
i aiσ , (2)

with the constraint
∑

σ a†
iσ aiσ = 1, where the spinless fermion operator hi keeps track of

the charge degree of freedom, while the boson operator aiσ keeps track of the spin degree of
freedom. Then the Hamiltonian (1) can be rewritten as

H = −t
∑
i η̂σ

hi a
†
iσ h†

i+η̂
ai+η̂σ + t ′ ∑

i τ̂ σ

hi a
†
iσ h†

i+τ̂
ai+τ̂ σ

− µ
∑

i

h†
i hi + J

∑
i η̂

(hi h
†
i )Si · Si+η̂(hi+η̂h†

i+η̂
), (3)

where the pseudospin operator Si = a†
i �σai/2. In this case, the electron constraint∑

σ C†
iσ Ciσ = 1 − h†

i hi � 1 is exactly satisfied, with n(h)
i = h†

i hi is the holon number at
site i , equal to 1 or 0. This decoupling scheme is called as the CP1 representation [30]. The
advantage of this formalism is that the charge and spin degrees of freedom of the electron may
be separated at the mean field (MF) level, where the elementary charge and spin excitations are
called the holon and spinon, respectively. We call such holon and spinon as the bare holon and
spinon, respectively, since an extra U(1) gauge degree of freedom related with the constraint∑

σ a†
iσ aiσ = 1 appears, i.e., the CP1 representation is invariant under a local U(1) gauge

transformation,

hi → hi eiθi , aiσ → aiσ eiθi , (4)

and then all physical quantities should be invariant with respect to this transformation. Thus
both bare holon hi and spinon aiσ are not gauge invariant, and they are strongly coupled by
these U(1) gauge field fluctuations. In other words, these bare holon and spinon are not real.

However, the constrained CP1 boson aiσ can be mapped exactly onto the pseudospin
representation defined with an additional phase factor; this is because the empty and doubly
occupied spin states have been ruled out due to the constraint a†

i↑ai↑ + a†
i↓ai↓ = 1, and only

the spin-up and spin-down singly occupied spin states are allowed, therefore the original four-
dimensional representation space is reduced to a 2D space. Due to the symmetry of the spin-up

and spin-down states, |occupied〉↑ =
(

1

0

)
↑

and |empty〉↑ =
(

0

1

)
↑

are singly-occupied and
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empty spin-up, while |occupied〉↓ =
(

0

1

)
↓

and |empty〉↓ =
(

1

0

)
↓

are singly-occupied and

empty spin-down states, respectively; thus the constrained CP1 boson operators aiσ can be
represented in this reduced 2D space as

a↑ = ei�↑ |occupied〉↓ ↑〈occupied| = ei�↑
(

0 0
1 0

)
= ei�↑ S−, (5a)

a↓ = ei�↓ |occupied〉↑ ↓〈occupied| = ei�↓
(

0 1
0 0

)
= ei�↓ S+, (5b)

where S− is the Sz lowering operator, while S+ is the Sz raising operator; then the constraint∑
σ a†

iσ aiσ = S+
i S−

i + S−
i S+

i = 1 is exactly satisfied. Obviously, the bare spinon contains both
phase and amplitude parts, and the phase part is described by the phase factor ei�iσ , while
the amplitude part is described by the spin operator Si . In this case, the electron decoupling
form (2) with the constraint can be expressed as

Ci↑ = h†
i ei�i↑ S−

i , Ci↓ = h†
i ei�i↓ S+

i , (6)

with the local U(1) gauge transformation (4) rewritten as

hi → hi e
iθi , �iσ → �iσ + θi . (7)

Moreover, the phase factor of the bare spinon ei�iσ can be incorporated into the bare holon;
thus we obtain a new fermion-spin transformation from equation (6) as

Ci↑ = h†
i↑S−

i , Ci↓ = h†
i↓S+

i , (8)

where the spinful fermion operator hiσ = e−i�iσ hi describes the charge degree of freedom
together with the phase part of the spin degree of freedom (dressed holon), while the spin
operator Si describes the amplitude part of the spin degree of freedom (dressed spinon). This
electron decoupling form (8) is called a partial CSS since only the amplitude part of the
spin degree of freedom is separated from the electron operator. These dressed holon and
spinon are invariant under the local U(1) gauge transformation (7), and therefore all physical
quantities from the dressed holon and spinon also are invariant with respect to this gauge
transformation. In this sense, the dressed holon and spinon are real. The dressed holon
carries a spinon cloud (magnetic flux), and is a magnetic dressing [24]. In other words, the
dressed holon carries some spinon messages, i.e., it shares some effects of spinon configuration
rearrangements due to the presence of the hole itself. We emphasize that the dressed holon
hiσ = e−i�iσ hi is the spinless fermion hi (bare holon) incorporated in the spinon cloud e−i�iσ

(magnetic flux). Although in the common sense hiσ is not an real spinful fermion operator,
it behaves like a spinful fermion. In correspondence with these special physical properties,
we find that h†

iσ hiσ = h†
i ei�iσ e−i�iσ hi = h†

i hi , which guarantees that the electron constraint,∑
σ C†

iσ Ciσ = S+
i hi↑h†

i↑S−
i + S−

i hi↓h†
i↓S+

i = hi h
†
i (S+

i S−
i + S−

i S+
i ) = 1 − h†

i hi � 1, is always

satisfied in analytical calculations. Moreover the double spinful fermionoccupancy, h†
iσ h†

i−σ =
ei�iσ h†

i h†
i ei�i−σ = 0 and hiσ hi−σ = e−i�iσ hi hi e−i�i−σ = 0, is ruled out automatically. Since

the spinless fermion hi and spin operators S+
i and S−

i obey the anticommutation relation and
Pauli spin algebra, respectively, it is then easy to show that the spinful fermion hiσ also obeys
the same anticommutation relation as the spinless fermion hi .

Although the choice of the CP1 representation is convenient, so long as h†
i hi = 1,∑

σ C†
iσ Ciσ = 0, no matter what the values of S+

i S−
i and S−

i S+
i are; therefore a ‘spin’ even to an

empty site has been assigned. It has been shown [29] that this defect can be cured by introducing
a projection operator Pi , i.e., the constrained electron operator can be mapped exactly using the
fermion-spin transformation (8) defined with an additional projection operator Pi . However,
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this projection operator is cumbersome to handle in the many cases, and it has been dropped
in the actual calculations [29, 31]. It has been shown [29, 31, 32] that such treatment leads to
errors of the order x in counting the number of spin states, which is negligible for small dopings.
Moreover, the electron constraint is still exactly obeyed even in the MF approximation (MFA),
and therefore the essential physics of the gauge invariant dressed holon and spinon is kept. This
is because the constrained electron operator Ciσ in the t–J type model can also be mapped onto
the slave-fermion formalism [31] as Ciσ = h†

i biσ with the constraint h†
i hi +

∑
σ b†

iσ biσ = 1.
We can solve this constraint by rewriting the boson operators biσ in terms of the CP1 boson

operators aiσ as biσ = aiσ

√
1 − h†

i hi supplemented by the constraint
∑

σ a†
iσ aiσ = 1. As

mentioned above, the CP1 boson operators ai↑ and ai↓ with the constraint can be identified
with the pseudospin lowering and raising operators, respectively, defined with the additional
phase factor; therefore the projection operator is approximately related to the holon number

operator by Pi ∼
√

1 − h†
iσ hiσ =

√
1 − h†

i hi , and its main role is to remove the spurious spin
when there is a holon at the site i .

3. Dressed holon and spinon Green functions

Before discussing the charge and spin dynamics, let us first calculate the dressed holon and
spinon Green functions. The low-energy behaviour of the t–t ′–J model in the partial CSS
fermion-spin representation can be expressed as [29, 31]

H = −t
∑

i η̂

(hi↑S+
i h†

i+η̂↑S−
i+η̂

+ hi↓S−
i h†

i+η̂↓S+
i+η̂) + t ′ ∑

i τ̂

(hi↑S+
i h†

i+τ̂↑S−
i+τ̂

+ hi↓S−
i h†

i+τ̂↓S+
i+τ̂ )

− µ
∑
iσ

h†
iσ hiσ + Jeff

∑
i η̂

Si · Si+η̂. (9)

where Jeff = (1 − x)2 J , and x = 〈h†
iσ hiσ 〉 = 〈h†

i hi 〉 is the hole doping concentration. As a
consequence, the kinetic part in the t–t ′–J model has been expressed as the dressed holon–
spinon interaction, which dominates the essential physics of the underdoped cuprates. The
one-particle dressed holon and spinon two-time Green functions are defined as

gσ (i − j, t − t ′) = −iθ(t − t ′)〈[hiσ (t), h†
jσ (t ′)]〉 = 〈〈hiσ (t); h†

jσ (t ′)〉〉, (10a)

D(i − j, t − t ′) = −iθ(t − t ′)〈[S+
i (t), S−

j (t ′)]〉 = 〈〈S+
i (t); S−

j (t ′)〉〉, (10b)

respectively, where 〈· · ·〉 is an average over the ensemble.

3.1. Equation of motion

Since the dressed spinon operators obey Pauli algebra, our goal is to evaluate the dressed
holon and spinon Green functions directly for the fermion and spin operators in terms of the
equation of motion method. In the framework of the equation of motion, the time-Fourier
transform of the two-time Green function G(ω) = 〈〈A; A†〉〉ω satisfies the equation [33]
ω〈〈A; A†〉〉ω = 〈[A, A†]〉 + 〈〈[A, H ]; A†〉〉ω . If we define the orthogonal operator L as
[A, H ] = ζ A − iL with 〈[L, A†]〉 = 0, the full Green function can be expressed as

G(ω) = G(0)(ω) +
1

ς2
G(0)(ω)〈〈L; L†〉〉ωG(0)(ω), (11)

where ς = 〈[A, A†]〉, and the MF Green function G(0)−1(ω) = (ω − ζ )/ς . It has been
shown [33] that if the self-energy 	(ω) is identified as the irreducible part of 〈〈L; L†〉〉ω , the
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full Green function (11) can be evaluated as

G(ω) = ς

ω − ζ − 	(ω)
, (12)

with 	(ω) = 〈〈L; L†〉〉irr
ω /ς . In the framework of the diagrammatic technique, 	(ω)

corresponds to the contribution of irreducible diagrams.

3.2. The mean-field theory

Within MFA, the t–t ′–J model (9) can be decoupled as

HMFA = Ht + HJ − 8Ntχ1φ1 + 8Nt ′χ2φ2, (13a)

Ht = χ1t
∑
i η̂σ

h†
i+η̂σ

hiσ − χ2t ′ ∑
i τ̂ σ

h†
i+τ̂ σ

hiσ − µ
∑
iσ

h†
iσ hiσ , (13b)

HJ = Jeff

∑
i η̂

[ 1
2ε(S+

i S−
i+η̂

+ S−
i S+

i+η̂) + SZ
i SZ

i+η̂] − φ2t ′ ∑
i τ̂

(S+
i S−

i+τ̂
+ S−

i S+
i+τ̂ ), (13c)

where the dressed holon’s particle–hole parameters φ1 = 〈h†
iσ hi+η̂σ 〉 and φ2 = 〈h†

iσ hi+τ̂ σ 〉, the
dressed spinon correlation functions χ1 = 〈S+

i S−
i+η̂

〉 and χ2 = 〈S+
i S−

i+τ̂
〉, and ε = 1 + 2tφ1/Jeff .

Since AFLRO in the undoped cuprates is destroyed [34] by hole doping of the order ∼0.024,
there is therefore no AFLRO in the doped regime x � 0.025, i.e., 〈Sz

i 〉 = 0, and a disordered
spin liquid state emerges. It has been argued that this spin liquid state may play a crucial role
in the mechanism for HTSC [3, 4]. In this paper, we focus on the normal-state properties in
the doped regime without AFLRO. In this case, a similar MF theory [35] of the t–J model
based on the fermion-spin theory has been discussed within the Kondo–Yamaji decoupling
scheme [36], which is a stage one step further than the Tyablikov’s decoupling scheme [37].
In this MF theory [35], the phase factor ei�iσ describing the phase part of the spin degree of
freedom was not considered. Following their discussions [35], we obtain the MF dressed holon
and spinon Green functions in the present case as

g(0)
σ (k, ω) = 1

ω − ξk
, (14a)

D(0)(k, ω) = Bk

ω2 − ω2
k

, (14b)

respectively, where Bk = λ1[2χ z
1(εγk − 1) + χ1(γk − ε)] − λ2(2χ z

2γ
′
k − χ2), λ1 = 2Z Jeff ,

λ2 = 4Zφ2t ′, γk = (1/Z)
∑

η̂ eik·η̂, γ ′
k = (1/Z)

∑
τ̂ eik·τ̂ , Z is the number of the nearest

neighbour or second-nearest neighbour sites, and the MF dressed holon and spinon excitation
spectra are given by

ξk = Ztχ1γk − Zt ′χ2γ
′
k − µ, (15a)

ω2
k = A1(γk)

2 + A2(γ
′
k)

2 + A3γkγ
′
k + A4γk + A5γ

′
k + A6, (15b)

respectively, with A1 = αελ2
1(εχ

z
1 + χ1/2), A2 = αλ2

2χ
z
2 , A3 = −αλ1λ2(εχ

z
1 + εχ z

2 +
χ1/2), A4 = −ελ2

1[α(χ z
1 + εχ1/2) + (αCz

1 + (1 − α)/(4Z) − αεχ1/(2Z)) + (αC1 + (1 −
α)/(2Z)−αχ z

1/2)/2] + αλ1λ2(C3 + εχ2)/2, A5 = −3αλ2
2χ2/(2Z)+ αλ1λ2(χ

z
1 + εχ1/2 + Cz

3),
A6 = λ2

1[αCz
1 + (1 − α)/(4Z) − αεχ1/(2Z) + ε2(αC1 + (1 − α)/(2Z) − αχ z

1 /2)/2] +
λ2

2(αC2 + (1 − α)/(2Z) − αχ z
2 /2)/2) − αελ1λ2C3, and the spinon correlation functions

χ z
1 = 〈Sz

i Sz
i+η̂

〉, χ z
2 = 〈Sz

i Sz
i+τ̂

〉, C1 = (1/Z 2)
∑

η̂,η̂′ 〈S+
i+η̂

S−
i+η̂′ 〉, Cz

1 = (1/Z 2)
∑

η̂,η̂′ 〈Sz
i+η̂

Sz
i+η̂′ 〉,

C2 = (1/Z 2)
∑

τ̂ ,τ̂ ′ 〈S+
i+τ̂

S−
i+τ̂ ′ 〉, C3 = (1/Z)

∑
τ̂ 〈S+

i+η̂
S−

i+τ̂
〉, and Cz

3 = (1/Z)
∑

τ̂ 〈Sz
i+η̂

Sz
i+τ̂

〉.
In order not to violate the sum rule of the correlation function 〈S+

i S−
i 〉 = 1/2 in the case

without AFLRO, the important decoupling parameter α has been introduced in the MF
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calculation [35, 36], which can be regarded as the vertex correction. All the above MF order
parameters, decoupling parameter α, and chemical potential µ are determined by the self-
consistent calculation [35].

3.3. The dressed holon and spinon self-energies

With the help of equation (12), the full dressed holon and spinon Green functions of the t–t ′–J
model (9) are expressed as

gσ (k, ω) = 1

ω − ξk − 	
(2)

h (k, ω)
, (16a)

D(k, ω) = Bk

ω2 − ω2
k − 	

(2)
s (k, ω)

, (16b)

respectively, where the second-order dressed holon self-energy from the dressed spinon
pair bubble 	

(2)

h (k, ω) = 〈〈L(h)
k (t); L(h)†

k (t ′)〉〉ω with the orthogonal operator L(h)
i =

−t
∑

η̂ hi+η̂σ (S−
i+η̂

S+
i − χ1) + t ′ ∑

τ̂ hi+τ̂ σ (S−
i+τ̂

S+
i − χ2), and can be evaluated as [31]

	
(2)

h (k, ω) = 1

2

(
Z

N

)2 ∑
pp′

γ 2
12(k, p, p′)

Bp′ Bp+p′

4ωp′ωp+p′

(
F (h)

1 (k, p, p′)
ω + ωp+p′ − ωp′ − ξp+k

+
F (h)

2 (k, p, p′)
ω + ωp′ − ωp+p′ − ξp+k

+
F (h)

3 (k, p, p′)
ω + ωp′ + ωp+p′ − ξp+k

− F (h)

4 (k, p, p′)
ω − ωp+p′ − ωp′ − ξp+k

)
, (17)

where γ 2
12(k, p, p′) = [(tγp′+p+k − t ′γ ′

p′+p+k)
2 + (tγp′−k − t ′γ ′

p′−k)
2], F (h)

1 (k, p, p′) = nF(ξp+k)

[nB(ωp′) − nB(ωp+p′)] + nB(ωp+p′)[1 + nB(ωp′)], F (h)
2 (k, p, p′) = nF(ξp+k)[nB(ωp′+p) −

nB(ωp′)] + nB(ωp′)[1 + nB(ωp′+p)], F (h)
3 (k, p, p′) = nF(ξp+k)[1 + nB(ωp+p′) + nB(ωp′)] +

nB(ωp′)nB(ωp+p′), F (h)
4 (k, p, p′) = nF(ξp+k)[1 + nB(ωp+p′) + nB(ωp′)] − [1 + nB(ωp′)][1 +

nB(ωp+p′)], and nB(ωp) and nF(ξp) are the boson and fermion distribution functions,
respectively. This dressed holon self-energy is ascribed purely to the dressed holon–spinon
interaction, and characterizes the competition between the kinetic energy and magnetic energy.
The calculation of the dressed spinon self-energy is quite tedious [38], since our starting
point is the dressed spinon MF solution [35] within the Kondo–Yamaji decoupling scheme
in section 3.2. From equation (11) and the MF dressed spinon Green function (14b),
the full dressed spinon Green function satisfies the relation [38], ω2 D(k, ω) = Bk +
〈〈[[S+

i (t), H (t)], H (t)]; S−
j (t ′)〉〉k,ω with [[S+

i , H ], H ]k = ω2
k S+

k − i�(s)
k . In the disordered

liquid state without AFLRO, the dressed holon–spinon interaction should dominate the
essential physics [38]. In this case, the orthogonal operator L(s)

k for the dressed spinon can be
selected from �

(s)
k as [38]

L(s)
i = −(2εχ z

1 + χ1)λ1
1

Z

∑
η̂,â

tâ(h
†
i+η̂↑hi+η̂+â↑ + h†

i+η̂+â↓hi+η̂↓ − 2φâ)S+
i+η̂+â

+ [(2χ z
1 + εχ1)λ1 − χ2λ2]

∑
â

tâ(h
†
i↑hi+â↑ + h†

i+â↓hi↓ − 2φâ)S+
i+â

+ 2χ z
2λ2

1

Z

∑
τ̂ ,â

tâ(h
†
i+τ̂↑hi+τ̂+â↑ + h†

i+τ̂+â↓hi+τ̂↓ − 2φâ)S+
i+τ̂+â, (18)
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where â = η̂, τ̂ , with tη̂ = t , φη̂ = φ1, and tτ̂ = −t ′, φτ̂ = φ2. Following [38], we obtain the
dressed spinon self-energy 	

(2)
s (k, ω) = 〈〈L(s)

i (t); L(s)†
j (t ′)〉〉k,ω ,

	(2)
s (k, ω) = Bk

(
Z

N

)2 ∑
pp′

γ 2
12(k, p, p′)

Bk+p

2ωk+p

×
(

F (s)
1 (k, p, p′)

ω + ξp+p′ − ξp′ − ωk+p
− F (s)

2 (k, p, p′)
ω + ξp+p′ − ξp′ + ωk+p

)
, (19)

with F (s)
1 (k, p, p′) = nF(ξp+p′)[1 − nF(ξp′)] − nB(ωk+p)[nF(ξp′) − nF(ξp+p′)], and

F (s)
2 (k, p, p′) = nF(ξp+p′)[1 − nF(ξp′)] + [1 + nB(ωk+p)][nF(ξp′) − nF(ξp+p′)]. Within

the diagrammatic technique, this dressed spinon self-energy 	
(2)
s (k, ω) corresponds to the

contribution from the dressed holon pair bubble, and is consistent with our previous result [38].

4. Charge transport

Recently, the emergence and evolution of metallic transport in doped cuprates have been
extensively studied by virtue of systematic transport measurements [14]. It is shown that the
resistivity shows a crossover from low temperature insulating-like to moderate temperature
metallic-like behaviour in the heavily underdoped regime (0.025 � x < 0.055), and a
temperature linear dependence with deviations at low temperatures in the underdoped regime
(0.055 < x < 0.15). These striking behaviours have been found to be intriguingly related
to the AF correlation [14]. In this case, a natural question is what is the physical origin of
this transport transformation from the insulating liquid state in the heavily underdoped regime
to the unusual metallic state in the underdoped regime? In this section, we try to discuss
this issue. Since the local constraint has been treated properly in the partial CSS fermion-spin
theory, the extra U(1) gauge degree of freedom related with the local constraint is incorporated
into the dressed holon as mentioned in section 2. In this case, the external electronic field only
is coupled to the dressed holons, and the conductivity is given by

σ(ω) = − Im �h(ω)

ω
, (20)

where �h(ω) is the dressed holon current–current correlation function, and is defined as
�h(t − t ′) = 〈〈 jh(t) jh(t ′)〉〉, where the current density of the dressed holons is obtained by
taking the time derivation of the polarization operator with the use of the equation of motion
as [31] jh = (eχ1t/2)

∑
i η̂σ η̂h†

i+η̂σ
hiσ − (eχ2t ′/2)

∑
i τ̂ σ τ̂h†

i+τ̂ σ
hiσ . With the help of the full

dressed holon Green function (16a), the current–current correlation function is evaluated as

�h(iωn) = −
(

Ze

2

)2 1

N

∑
k

γ 2
s (k)

1

β

∑
iω′

mσ

gσ (k, iω′
m + iωn)gσ (k, iω′

m), (21)

where iωn is the Matsubara frequency, γ 2
s (k) = [sin2 kx(χ1t − 2χ2t ′ cos ky)

2 + sin2 ky(χ1t −
2χ2t ′ cos kx)

2]/4. The full dressed holon Green function can be expressed as frequency
integrals in terms of the spectral representation,

gσ (k, iωn) =
∫ ∞

−∞
dω

2π

A(h)
σ (k, ω)

iωn − ω
, (22)

with the dressed holon spectral function A(h)
σ (k, ω) = −2 Im gσ (k, ω). Substituting the

equations (22) and (21) into equation (20), and evaluating the frequency summation, we obtain
the conductivity as [31]

σ(ω) =
(

Ze

2

)2 1

N

∑
kσ

γ 2
s (k)

∫ ∞

−∞
dω′

2π
A(h)

σ (k, ω′ + ω)A(h)
σ (k, ω′)

nF(ω
′ + ω) − nF(ω

′)
ω

. (23)
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Figure 1. The conductivity at x = 0.03 (solid curve), x = 0.05 (dashed curve), and x = 0.07
(dotted curve) with t/J = 2.5 and t ′/t = 0.15 in T = 0. Inset: the experimental result of
YBa2Cu3O7−x taken from [11].

We have performed a numerical calculation for σ(ω), and the results at x = 0.03 (solid curve),
x = 0.05 (dashed curve), and x = 0.07 (dotted curve) for t/J = 2.5 and t ′/t = 0.15 with
T = 0 are plotted in figure 1; hereinafter the charge e is set as the unit. For a comparison,
the experimental result [11] of YBa2Cu3O7−x is also plotted in figure 1 (inset). Our results
show that there is a low-energy peak at ω < 0.3t separated by a gap or pseudogap at 0.3t from
a midinfrared band. This midinfrared band is doping dependent: the component increases
with increasing dopings for 0.3t < ω < 1.0t and is nearly independent of dopings for
ω > 1.0t; however, the position of the midinfrared peak is shifted to lower energies with
increased dopings. This reflects an increase in the mobile carrier density, and indicates that
the spectral weight of the midinfrared sideband is taken from the Drude absorption; then the
spectral weight from both low energy peak and midinfrared band represent the actual free-
carrier density. For a better understanding of the optical properties, we have made a series
of calculations for σ(ω) at different temperatures, and the results at x = 0.06 with T = 0
(solid curve), T = 0.1J (dashed curve), and T = 0.3J (dotted curve) for t/J = 2.5 and
t ′/t = 0.15 are plotted in figure 2 in comparison with the experimental data [11] taken from
YBa2Cu3O7−x (inset). It is shown that σ(ω) is temperature dependent for ω < 1.0t , and almost
temperature independent for ω > 1.0t . The peak at low energies broadens and decreases in
height with increasing temperatures, while the component in the low energy region increases
with increasing temperatures, then there is a tendency towards the Drude-like behaviour. The
midinfrared band is severely suppressed with increasing temperatures, and vanishes at high
temperatures, in qualitative agreement with experiments [11, 12].

Now we turn to discuss the resistivity, which is evaluated as ρ = 1/σdc, with the dc
conductivity σdc obtained from equation (23) as σdc = limω→0 σ(ω). This resistivity has been
evaluated numerically, and the results are plotted in figure 3 as a function of temperature at
x = 0.03 (solid curve), x = 0.04 (dashed curve), x = 0.05 (dotted curve), and x = 0.06 (chain
curve) for t/J = 2.5 and t ′/t = 0.15 in comparison with the experimental data [14] taken
from La2−x SrxCuO4 (inset). Our results show obviously that the resistivity is characterized
by a crossover from the moderate temperature metallic-like to low temperature insulating-
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Figure 2. The conductivity at x = 0.06 in T = 0 (solid curve), T = 0.1J (dashed curve), and
T = 0.3J (dotted curve) with t/J = 2.5 and t ′/t = 0.15. Inset: the experimental result of
YBa2Cu3O7−x taken from [11].

Figure 3. The electron resistivity as a function of temperature at x = 0.03 (solid curve), x = 0.04
(dashed curve), x = 0.05 (dotted curve), and x = 0.06 (chain curve) with t/J = 2.5 and
t ′/t = 0.15. Inset: the experimental result of La2−x Srx CuO4 taken from [14].

like behaviour in the heavily underdoped regime, and a temperature linear dependence with
deviations at low temperatures in the underdoped regime. But even in the heavily underdoped
regime, the resistivity exhibits metallic-like behaviour over a wide range of temperatures,
which also is in qualitative agreement with experiments [14].

The perovskite parent compound of doped cuprates is a Mott insulator; when holes are
doped into this insulator, there is a gain in the kinetic energy per hole proportional to t
due to hopping, but at the same time, the spin correlation is destroyed, costing an energy
of approximately J per site. Thus doped holes in a Mott insulator can be considered as a
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competition between the kinetic energy (xt) and magnetic energy (J ). The magnetic energy J
favours the magnetic order for spins and results in frustration of the kinetic energy, while the
kinetic energy xt favours delocalization of holes and tends to destroy the magnetic order. In the
present partial CSS fermion-spin theory, the scattering of dressed holons dominates the charge
transport, since the scattering rate is obtained from the dressed holon self-energy 	

(2)

h (k, ω),
while this self-energy is evaluated by considering the dressed holon–spinon interaction, and
characterizes a competition between the kinetic energy and magnetic energy. In this case,
the striking behaviour in the resistivity is intriguingly related to this competition. In the
heavily underdoped regime, the dressed holon kinetic energy is much smaller than the dressed
spinon magnetic energy at lower temperatures due to the strong AF correlation, where the
dressed holons are localized, and the scattering rate from the dressed holon self-energy is
severely reduced; this leads to the insulating-like behaviour in the resistivity. With increasing
temperatures, the dressed holon kinetic energy is increased, while the dressed spinon magnetic
energy is decreased. In the region where the dressed holon kinetic energy is larger than the
dressed spinon magnetic energy at moderate temperatures, the dressed holons can move in the
background of the dressed spinon fluctuation; then the dressed holon scattering would give rise
to the metallic-like behaviour in the resistivity. Since the charge transport is governed by the
dressed holon scattering, the x dressed holons are responsible for the electron conductivity.

5. Incommensurate spin dynamics

The interplay between AF correlation and HTSC in doped cuprates is now well-established [1],
but its full understanding is still a challenging issue. Experimentally, NMR, NQR, and µSR
techniques, particularly inelastic neutron scattering, can provide rather detailed information
on the spin dynamics of doped cuprates [5–10]. It has been shown [7, 8] that when AFLRO is
suppressed, the IC magnetic correlation develops at a quartet of wavevector [π(1 ± δ), π] and
[π, (1 ± δ)π], where the incommensurability δ increases almost linearly with the hole doping
concentration x at lower dopings, and saturates at higher dopings. These exotic features
are fully confirmed by the data both on the normal and superconducting states [7, 8]. It
has been argued that the emergence of the IC magnetic correlation is due to dopings [39].
Although a sharp resonance peak at the commensurate AF wavevector has been observed in
some optimally doped samples, this commensurate scattering is the main new feature that
appears in the superconducting phase [40, 8]. In this section, we only discuss the IC magnetic
correlation in the normal state. Within the present partial CSS fermion-spin theory, the spin
fluctuation couples only to the dressed spinons; then the dynamical spin structure factor (DSSF)
is obtained in terms of the full dressed spinon Green function (16b) as [38]

S(k, ω) = −2[1 + nB(ω)] Im D(k, ω)

= − 2[1 + nB(ω)]
Bk Im 	

(2)
s (k, ω)

[ω2 − ω2
k − Re 	

(2)
s (k, ω)]2 + [Im 	

(2)
s (k, ω)]2

, (24)

where Im 	
(2)
s (k, ω) and Re 	

(2)
s (k, ω) are the corresponding imaginary part and real part of

the dressed spinon self-energy function 	
(2)
s (k, ω) in equation (19).

At the half-filling, the spin fluctuation scattering remains commensurate at the AF
wavevector Q = [1/2, 1/2] position (hereafter we use units of [2π, 2π]), which is not presented
here for the sake of space. Instead, we plot the DSSF spectrum S(k, ω) in the (kx, ky) plane
at x = 0.06 with T = 0.05J and ω = 0.05J for t/J = 2.5 and t ′/t = 0.15 in figure 4. This
result shows that with dopings, there is a commensurate–IC transition in the spin fluctuation
geometry, where all IC peaks lie on a circle of radius of δ. Although some IC satellite diagonal
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Figure 4. The dynamical spin structure factor spectrum in the (kx , ky) plane at x = 0.06 in
T = 0.05J and ω = 0.05J with t/J = 2.5 and t ′/t = 0.15.

peaks appear, the main weight of the IC peaks is in the parallel direction, and these parallel
peaks are located at [(1 ± δ)/2, 1/2] and [1/2, (1 ± δ)/2]. The IC peaks are very sharp at low
temperatures and energies, which means that these low energy excitations have a dynamical
coherence length at low temperatures that is larger than the instantaneous correlation length.
For considering IC magnetic fluctuation at a relatively high energy, we have made a series of
scans for S(k, ω) with several energies, and the result at x = 0.06 in t/J = 2.5 and t ′/t = 0.15
with T = 0.05J for ω = 0.1J is shown in figure 5. Comparing it with figure 4 for the same set
of parameters except for ω = 0.05J , we see that at low temperatures, although the positions
of the IC peaks are energy independent, the IC peaks broaden and weaken in amplitude as the
energy increase, and vanish at high energies. This reflects that the excitation width increases
with increasing energies, and thus leads to the lifetime of the excitations decreasing quickly
with increasing energies. The present DSSF spectrum has been used to extract the doping
dependence of the incommensurability δ(x), which is defined as the deviation of the peak
position from the AF wavevector position, and the result is plotted in figure 6 in comparison
with the experimental result [7] taken from La2−x Srx CuO4 (inset). Our result shows that δ(x)

increases progressively with the doping concentration at lower dopings, but saturates at higher
dopings, in qualitative agreement with experiments [7, 8].

The universal integrated dynamical spin response is a characteristic feature, and is closely
related to many other normal-state properties [1]. The integrated dynamical spin response is
manifested by the integrated dynamical spin susceptibility (IDSS), and is expressed as

I (ω, T ) = 1

N

∑
k

χ ′′(k, ω), (25)

where the dynamical spin susceptibility is related to DSSF by the fluctuation dissipation
theorem as χ ′′(k, ω) = (1 − e−βω)S(k, ω) = −2 Im D(k, ω). This IDSS has been evaluated
numerically, and the results at x = 0.12 for t/J = 2.5 and t ′/t = 0.15 with T = 0.2J (solid
curve), T = 0.3J (dashed curve), and T = 0.5J (dotted curve) are plotted in figure 7 in
comparison with the experimental data [9] taken from La2−x Srx CuO4 (inset). It is shown that
the shape of the IDSS appears to be particularly universal, and can be scaled approximately as
I (ω, T ) ∝ arctan[a1ω/T + a3(ω/T )3], where I (ω, T ) is almost constant for ω/T > 1, and
then begins to decrease with decreasing ω/T for ω/T < 1, also in qualitative agreement with
experiments [9, 10].
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Figure 5. The dynamical spin structure factor spectrum in the (kx , ky) plane at x = 0.06 with
t/J = 2.5 and t ′/t = 0.15 in T = 0.05J and ω = 0.1J .

Figure 6. The doping dependence of the incommensurability δ(x). Inset: the experimental result
for La2−x Srx CuO4 taken from [7].

Although the scattering of the dressed spinons dominates the spin dynamics, the effect
of the dressed holons on the dressed spinon part is critical in determining the characteristic
feature of the IC magnetic correlation, which can be understood from the properties of the
dressed spinon excitation spectrum E2

k = ω2
k + Re 	

(2)
s (k, Ek). During the calculation of the

DSSF spectrum in equation (24), we find when W (kδ , ω) = [ω2 −ω2
kδ

−Re 	
(2)
s (kδ, ω)]2 ∼ 0

at some critical wavevectors ±kδ in low energies, the IC peaks appear; then the weight of
the IC peaks is dominated by the inverse of the imaginary part of the dressed spinon self-
energy 1/ Im 	

(2)
s (kδ, ω). Thus the positions of the IC peaks are determined by both functions

W (k, ω) and Im 	
(2)
s (k, ω), where the zero points of W (k, ω) (then the critical wavevectors

kδ) are doping dependent. Near the half-filling, the zero point of W (k, ω) locates at the AF
wavevector [1/2, 1/2], so the commensurate AF peak appears there. With doping, the holes
disturb the AF background. Within the partial CSS framework, as a result of the self-consistent
motion of the dressed holons and spinons, the IC magnetic correlation is developed beyond a
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Figure 7. The integrated dynamical spin susceptibility at x = 0.12 with t/J = 2.5 and t ′/t = 0.15
in T = 0.2J (solid curve), T = 0.3J (dashed curve), and T = 0.5J (dotted curve). Inset: the
experimental result for La2−x Srx CuO4 taken from [9].

certain critical doping; this reflects the fact that the low energy spin excitations drift away from
the AF wavevector, or the zero point of W (kδ , ω) is shifted from [1/2, 1/2] to kδ. As is seen
from equation (24), the physics is dominated by the dressed spinon self-energy renormalization
due to the dressed holon pair bubble. In this sense, the mobile dressed holons are the key factor
leading to the IC magnetic correlation, i.e., the mechanism of the IC type of structure in doped
cuprates is most likely related to the dressed holon motion. This is why the position of the
IC peaks can be determined in the present study within the t–t ′–J model, while the dressed
spinon energy dependence is ascribed purely to the self-energy effects which arise from the
dressed holon–spinon interaction. Since the values of Im 	

(2)
s (k, ω) increase with increasing

energies, then all values of 1/ Im 	
(2)
s (k, ω) are very small at high energies, which leads to the

IC peaks disappearing at high energies.

6. Summary and discussions

In summary, we have developed a partial CSS fermion-spin theory to study the physical
properties of the underdoped cuprates. In this approach, the physical electron is decoupled
completely as the dressed holon and spinon, where the dressed holon keeps track of the charge
degree of freedom together with the phase part of the spin degree of freedom, while the dressed
spinon keeps track of the amplitude part of the spin degree of freedom. The local electron
constraint for single occupancy is satisfied in analytical calculations. The dressed holon is a
magnetic dressing, and it behaves like a spinful fermion, while the dressed spinon is neither
boson nor fermion, but a hard-core boson. Moreover, both dressed holon and spinon are gauge
invariant, and in this sense, they are real and can be interpreted as physical excitations. In the
common decoupling scheme, we obtain the full dressed holon and spinon Green functions by
using the equation of motion method.

Within this theoretical framework, we have studied the charge and spin dynamics of
the underdoped cuprates based on the t–t ′–J model. The conductivity spectrum contains a
non-Drude low energy peak and a broad midinfrared band, while the temperature dependent
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resistivity is characterized by a crossover from the moderate temperature metallic-like to
the low temperature insulating-like behaviour in the heavily underdoped regime, and a
temperature linear dependence with deviations at low temperatures in the underdoped regime.
The commensurate neutron scattering peak at the half-filling is split into IC peaks with
dopings, where the incommensurability is doping dependent, and increases with hole doping
concentration at lower dopings, and saturates at higher dopings. These results are qualitatively
similar to those seen in experiments. It is essential that these theoretical results were obtained
without any adjustable parameters. These results also show that the charge dynamics is mainly
governed by the scattering from the dressed holons due to the dressed spinon fluctuation,
while the scattering from the dressed spinons due to the dressed holon fluctuation dominates
the spin dynamics. In this case, the spin and charge dynamics in the normal state are almost
independent, and the perturbations that interact primarily with the charge do not greatly affect
the spin [21]; therefore the notion of partial CSS naturally accounts for the qualitative features
of the normal state of the underdoped cuprates.

Based on this partial CSS fermion-spin theory, we have discussed the mechanism of HTSC
in doped cuprates [41]. It is shown that dressed holons interact occurring directly through
the kinetic energy by exchanging the dressed spinon excitations, leading to a net attractive
force between the dressed holons; then the electron Cooper pairs originating from the dressed
holon pairing state are due to the charge–spin recombination, and their condensation reveals
the superconducting ground-state. The electron superconducting transition temperature is
determined by the dressed holon pair transition temperature, and is proportional to the hole
doping concentration in the underdoped regime. To our present understanding, the main
reasons why the present theory is successful in studying the physical properties of doped
cuprates are as follows.

(1) The local electron constraint is exactly obeyed during analytical calculations in contrast
with the slave-particle approach, where the local constraint is explicitly replaced by a
global one [2, 29]. In this case, the representation space in the slave-particle approach is
much larger than the representation space for the physical electron.

(2) Since the extra U(1) gauge degree of freedom related with the local constraint has been
incorporated into the dressed holon, this leads to the fact that the dressed holon and spinon
are gauge invariant in the partial CSS fermion-spin theory. However, the bare holon and
spinon in the slave-particle theory are strongly coupled by the U(1) gauge field fluctuation;
they are not gauge invariant.

(3) The representation of the dressed spinon in terms of the spin raising and lowering operators
is essential in the present approach [29], because whenever a dressed holon hops it gives
rise immediately to a change of the spin background as a result of careful treatment of the
constraint given in section 2.

This is why the dressed holon–spinon interaction (kinetic part) dominates the essential
physics of the underdoped cuprates [31, 38].
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